skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shang, Shunli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The present work generates designed compositions using high-throughput computational and machine-learning (ML) models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the room temperature mechanical properties of the alloy and were validated with experimental mechanical data obtained from the three-point bending and compression tests. This work collectively showcases a data-driven, inverse design methodology that can effectively identify new promising multicomponent refractory alloys. 
    more » « less
  2. null (Ed.)